Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce.

Identifieur interne : 000450 ( Main/Exploration ); précédent : 000449; suivant : 000451

Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce.

Auteurs : Claudia-Nicole Meisrimler [Pays-Bas, Nouvelle-Zélande] ; Alexandra J E. Pelgrom [Pays-Bas] ; Bart Oud [Pays-Bas] ; Suzan Out [Pays-Bas] ; Guido Van Den Ackerveken [Pays-Bas]

Source :

RBID : pubmed:31077456

Descripteurs français

English descriptors

Abstract

To cause disease in lettuce, the biotrophic oomycete Bremia lactucae secretes potential RxLR effector proteins. Here we report the discovery of an effector-target hub consisting of four B. lactucae effectors and one lettuce protein target by a yeast-two-hybrid (Y2H) screening. Interaction of the lettuce tail-anchored NAC transcription factor, LsNAC069, with B. lactucae effectors does not require the N-terminal NAC domain but depends on the C-terminal region including the transmembrane domain. Furthermore, in Y2H experiments, B. lactucae effectors interact with Arabidopsis and potato tail-anchored NACs, suggesting that they are conserved effector targets. Transient expression of RxLR effector proteins BLR05 and BLR09 and their target LsNAC069 in planta revealed a predominant localization to the endoplasmic reticulum. Phytophthora capsici culture filtrate and polyethylene glycol treatment induced relocalization to the nucleus of a stabilized LsNAC069 protein, lacking the NAC-domain (LsNAC069ΔNAC ). Relocalization was significantly reduced in the presence of the Ser/Cys-protease inhibitor TPCK indicating proteolytic cleavage of LsNAC069 allows for relocalization. Co-expression of effectors with LsNAC069ΔNAC reduced its nuclear accumulation. Surprisingly, LsNAC069 silenced lettuce lines had decreased LsNAC069 transcript levels but did not show significantly altered susceptibility to B. lactucae. In contrast, LsNAC069 silencing increased resistance to Pseudomonas cichorii bacteria and reduced wilting effects under moderate drought stress, indicating a broad role of LsNAC069 in abiotic and biotic stress responses.

DOI: 10.1111/tpj.14383
PubMed: 31077456


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce.</title>
<author>
<name sortKey="Meisrimler, Claudia Nicole" sort="Meisrimler, Claudia Nicole" uniqKey="Meisrimler C" first="Claudia-Nicole" last="Meisrimler">Claudia-Nicole Meisrimler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Canterbury, Ilam, Private Bag 4800, Christchurch, 8041, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>University of Canterbury, Ilam, Private Bag 4800, Christchurch, 8041</wicri:regionArea>
<wicri:noRegion>8041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pelgrom, Alexandra J E" sort="Pelgrom, Alexandra J E" uniqKey="Pelgrom A" first="Alexandra J E" last="Pelgrom">Alexandra J E. Pelgrom</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Oud, Bart" sort="Oud, Bart" uniqKey="Oud B" first="Bart" last="Oud">Bart Oud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB</wicri:regionArea>
<wicri:noRegion>1602 DB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Out, Suzan" sort="Out, Suzan" uniqKey="Out S" first="Suzan" last="Out">Suzan Out</name>
<affiliation wicri:level="1">
<nlm:affiliation>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB</wicri:regionArea>
<wicri:noRegion>1602 DB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Den Ackerveken, Guido" sort="Van Den Ackerveken, Guido" uniqKey="Van Den Ackerveken G" first="Guido" last="Van Den Ackerveken">Guido Van Den Ackerveken</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31077456</idno>
<idno type="pmid">31077456</idno>
<idno type="doi">10.1111/tpj.14383</idno>
<idno type="wicri:Area/Main/Corpus">000479</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000479</idno>
<idno type="wicri:Area/Main/Curation">000479</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000479</idno>
<idno type="wicri:Area/Main/Exploration">000479</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce.</title>
<author>
<name sortKey="Meisrimler, Claudia Nicole" sort="Meisrimler, Claudia Nicole" uniqKey="Meisrimler C" first="Claudia-Nicole" last="Meisrimler">Claudia-Nicole Meisrimler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Canterbury, Ilam, Private Bag 4800, Christchurch, 8041, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>University of Canterbury, Ilam, Private Bag 4800, Christchurch, 8041</wicri:regionArea>
<wicri:noRegion>8041</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pelgrom, Alexandra J E" sort="Pelgrom, Alexandra J E" uniqKey="Pelgrom A" first="Alexandra J E" last="Pelgrom">Alexandra J E. Pelgrom</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Oud, Bart" sort="Oud, Bart" uniqKey="Oud B" first="Bart" last="Oud">Bart Oud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB</wicri:regionArea>
<wicri:noRegion>1602 DB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Out, Suzan" sort="Out, Suzan" uniqKey="Out S" first="Suzan" last="Out">Suzan Out</name>
<affiliation wicri:level="1">
<nlm:affiliation>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB</wicri:regionArea>
<wicri:noRegion>1602 DB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Den Ackerveken, Guido" sort="Van Den Ackerveken, Guido" uniqKey="Van Den Ackerveken G" first="Guido" last="Van Den Ackerveken">Guido Van Den Ackerveken</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht</wicri:regionArea>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2" type="province">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Nucleus (metabolism)</term>
<term>Disease Resistance (MeSH)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Gene Expression Regulation (genetics)</term>
<term>Gene Silencing (immunology)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Lettuce (genetics)</term>
<term>Lettuce (metabolism)</term>
<term>Oomycetes (metabolism)</term>
<term>Oomycetes (pathogenicity)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Protein Domains (genetics)</term>
<term>Protein Transport (genetics)</term>
<term>Proteins (metabolism)</term>
<term>Pseudomonas (pathogenicity)</term>
<term>Stress, Physiological (genetics)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Domaines protéiques (génétique)</term>
<term>Extinction de l'expression des gènes (immunologie)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Laitue (génétique)</term>
<term>Laitue (métabolisme)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Oomycetes (métabolisme)</term>
<term>Oomycetes (pathogénicité)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines (métabolisme)</term>
<term>Pseudomonas (pathogénicité)</term>
<term>Régulation de l'expression des gènes (génétique)</term>
<term>Résistance à la maladie (MeSH)</term>
<term>Réticulum endoplasmique (métabolisme)</term>
<term>Stress physiologique (génétique)</term>
<term>Transport des protéines (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Host-Pathogen Interactions</term>
<term>Lettuce</term>
<term>Protein Domains</term>
<term>Protein Transport</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Facteurs de transcription</term>
<term>Interactions hôte-pathogène</term>
<term>Laitue</term>
<term>Régulation de l'expression des gènes</term>
<term>Stress physiologique</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Extinction de l'expression des gènes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Gene Silencing</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Endoplasmic Reticulum</term>
<term>Lettuce</term>
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Laitue</term>
<term>Noyau de la cellule</term>
<term>Oomycetes</term>
<term>Protéines</term>
<term>Réticulum endoplasmique</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Oomycetes</term>
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Oomycetes</term>
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disease Resistance</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phylogenèse</term>
<term>Résistance à la maladie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To cause disease in lettuce, the biotrophic oomycete Bremia lactucae secretes potential RxLR effector proteins. Here we report the discovery of an effector-target hub consisting of four B. lactucae effectors and one lettuce protein target by a yeast-two-hybrid (Y2H) screening. Interaction of the lettuce tail-anchored NAC transcription factor, LsNAC069, with B. lactucae effectors does not require the N-terminal NAC domain but depends on the C-terminal region including the transmembrane domain. Furthermore, in Y2H experiments, B. lactucae effectors interact with Arabidopsis and potato tail-anchored NACs, suggesting that they are conserved effector targets. Transient expression of RxLR effector proteins BLR05 and BLR09 and their target LsNAC069 in planta revealed a predominant localization to the endoplasmic reticulum. Phytophthora capsici culture filtrate and polyethylene glycol treatment induced relocalization to the nucleus of a stabilized LsNAC069 protein, lacking the NAC-domain (LsNAC069
<sup>Δ</sup>
<sup>NAC</sup>
). Relocalization was significantly reduced in the presence of the Ser/Cys-protease inhibitor TPCK indicating proteolytic cleavage of LsNAC069 allows for relocalization. Co-expression of effectors with LsNAC069
<sup>Δ</sup>
<sup>NAC</sup>
reduced its nuclear accumulation. Surprisingly, LsNAC069 silenced lettuce lines had decreased LsNAC069 transcript levels but did not show significantly altered susceptibility to B. lactucae. In contrast, LsNAC069 silencing increased resistance to Pseudomonas cichorii bacteria and reduced wilting effects under moderate drought stress, indicating a broad role of LsNAC069 in abiotic and biotic stress responses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31077456</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>99</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce.</ArticleTitle>
<Pagination>
<MedlinePgn>1098-1115</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14383</ELocationID>
<Abstract>
<AbstractText>To cause disease in lettuce, the biotrophic oomycete Bremia lactucae secretes potential RxLR effector proteins. Here we report the discovery of an effector-target hub consisting of four B. lactucae effectors and one lettuce protein target by a yeast-two-hybrid (Y2H) screening. Interaction of the lettuce tail-anchored NAC transcription factor, LsNAC069, with B. lactucae effectors does not require the N-terminal NAC domain but depends on the C-terminal region including the transmembrane domain. Furthermore, in Y2H experiments, B. lactucae effectors interact with Arabidopsis and potato tail-anchored NACs, suggesting that they are conserved effector targets. Transient expression of RxLR effector proteins BLR05 and BLR09 and their target LsNAC069 in planta revealed a predominant localization to the endoplasmic reticulum. Phytophthora capsici culture filtrate and polyethylene glycol treatment induced relocalization to the nucleus of a stabilized LsNAC069 protein, lacking the NAC-domain (LsNAC069
<sup>Δ</sup>
<sup>NAC</sup>
). Relocalization was significantly reduced in the presence of the Ser/Cys-protease inhibitor TPCK indicating proteolytic cleavage of LsNAC069 allows for relocalization. Co-expression of effectors with LsNAC069
<sup>Δ</sup>
<sup>NAC</sup>
reduced its nuclear accumulation. Surprisingly, LsNAC069 silenced lettuce lines had decreased LsNAC069 transcript levels but did not show significantly altered susceptibility to B. lactucae. In contrast, LsNAC069 silencing increased resistance to Pseudomonas cichorii bacteria and reduced wilting effects under moderate drought stress, indicating a broad role of LsNAC069 in abiotic and biotic stress responses.</AbstractText>
<CopyrightInformation>© 2019 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Meisrimler</LastName>
<ForeName>Claudia-Nicole</ForeName>
<Initials>CN</Initials>
<Identifier Source="ORCID">0000-0002-3571-245X</Identifier>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Canterbury, Ilam, Private Bag 4800, Christchurch, 8041, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pelgrom</LastName>
<ForeName>Alexandra J E</ForeName>
<Initials>AJE</Initials>
<Identifier Source="ORCID">0000-0003-2064-7154</Identifier>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oud</LastName>
<ForeName>Bart</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Out</LastName>
<ForeName>Suzan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Enza Zaden, Haling 1-E, Enkhuizen, 1602 DB, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van den Ackerveken</LastName>
<ForeName>Guido</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0002-0183-8978</Identifier>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>Pi03192</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Organism" UI="C000637691">Pseudomonas cichorii</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018545" MajorTopicYN="N">Lettuce</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011549" MajorTopicYN="N">Pseudomonas</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Bremia lactucae </Keyword>
<Keyword MajorTopicYN="Y">Lactuca sativa </Keyword>
<Keyword MajorTopicYN="Y">Pseudomonas cichorii </Keyword>
<Keyword MajorTopicYN="Y">NAC transcription factors</Keyword>
<Keyword MajorTopicYN="Y">drought stress</Keyword>
<Keyword MajorTopicYN="Y">oomycetes</Keyword>
<Keyword MajorTopicYN="Y">transcription factor relocalization</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31077456</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14383</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adam, Z. (2013) Emerging roles for diverse intramembrane proteases in plant biology. Biochem. Biophys. Acta 1828, 2933-2936.</Citation>
</Reference>
<Reference>
<Citation>Amberg, D.C., Burke, D.J., and Strathern, J.N. (2006). Yeast colony PCR. CSH Protoc. 1, prot4170.</Citation>
</Reference>
<Reference>
<Citation>Aung, K., Jiang, Y. and He, S.Y. (2018) The role of water in plant-microbe interactions. Plant J. 93(4), 771-780.</Citation>
</Reference>
<Reference>
<Citation>Bernsel, A., Viklund, H., Hennerdal, A. and Elofsson, A. (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 37, 465-468.</Citation>
</Reference>
<Reference>
<Citation>Block, A., Toruño, T.Y., Elowsky, C.G., Zhang, C., Steinbrenner, J., Beynon, J. and Alfano, J.R. (2014) The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. New Phytol. 201, 1358-1370.</Citation>
</Reference>
<Reference>
<Citation>Bond, J.S. and Butler, P.E. (1987) Intracellular proteases. Annu. Rev. Biochem. 56, 333-364.</Citation>
</Reference>
<Reference>
<Citation>Borgese, N. and Fasana, E. (2011) Targeting pathways of C-tail-anchored proteins. Biochem. Biophys. Acta 1808, 937-946.</Citation>
</Reference>
<Reference>
<Citation>Brambillasca, S., Yabal, M., Makarow, M. and Borgese, N. (2006) Unassisted translocation of large polypeptide domains across phospholipid bilayers. J. Cell Biol. 175, 767-777.</Citation>
</Reference>
<Reference>
<Citation>Chang, C.L., Hsieh, T.S., Yang, T.T., Rothberg, K.G., Azizoglu, D.B., Volk, E., Liao, J.C. and Liou, J. (2013) Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep. 5, 813-825. https://doi.org/10.1016/j.celrep.2013.09.038.</Citation>
</Reference>
<Reference>
<Citation>Cheng Li, S. and Deber, C.M. (1994) A measure of helical propensity for amino acids in membrane environments. Nat. Struct. Biol. 1, 368-373.</Citation>
</Reference>
<Reference>
<Citation>De Clercq, I., Vermeirssen, V., Van Aken, O. et al. (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25, 3472-3490.</Citation>
</Reference>
<Reference>
<Citation>Fabro, G., Steinbrenner, J., Coates, M. et al. (2011) Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS Pathog. 7, e1002348.</Citation>
</Reference>
<Reference>
<Citation>Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X. and Xiong, L. (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot. 66(21), 6803-6817.</Citation>
</Reference>
<Reference>
<Citation>Fletcher, K., Gil, J., Bertier, L.D. et al. (2019) Genomic signatures of somatic hybrid vigor due to heterokaryosis in the oomycete pathogen, Bremia lactucae. bioRxiv, 516526.</Citation>
</Reference>
<Reference>
<Citation>Freeman, M. (2014) The rhomboid-like superfamily: molecular mechanisms and biological roles. Annu. Rev. Cell Dev. Biol. 30, 235-254.</Citation>
</Reference>
<Reference>
<Citation>Fromont-Racine, M., Rain, J.C. and Legrain, P. (2002) Building protein-protein networks by two-hybrid mating strategy. Methods Enzymol. 350, 513-524.</Citation>
</Reference>
<Reference>
<Citation>Giesbers, A.K.J., Pelgrom, A.J.E., Visser, R.G.F., Niks, R.E., Van den Ackerveken, G. and Jeuken, M.J.W. (2017) Effector-mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. New Phytol. 216, 915-926.</Citation>
</Reference>
<Reference>
<Citation>Grouffaud, S., Whisson, S.C., Birch, P.R. and van West, P. (2010) Towards an understanding on how RxLR-effector proteins are translocated from oomycetes into host cells. Fungal Biol Rev. 24(1-2), 27-36.</Citation>
</Reference>
<Reference>
<Citation>Haas, B.J., Kamoun, S., Zody, M.C. et al. (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461, 393-398.</Citation>
</Reference>
<Reference>
<Citation>Hellal, F.A., El-Shabrawi, H.M., El-Hady, M.A., Khatab, I.A., El-Sayed, S.A.A. and Abdelly, C. (2018) Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J Genet Eng Biotechnol. 16(1), 203-212.</Citation>
</Reference>
<Reference>
<Citation>Helliwell, C. and Waterhouse, P. (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30, 289-295.</Citation>
</Reference>
<Reference>
<Citation>Jia, T., Gao, C., Cui, Y., Wang, J., Ding, Y., Cai, Y., Ueda, T., Nakano, A. and Jiang, L. (2013) ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. J. Exp. Bot. 64, 2817-2829.</Citation>
</Reference>
<Reference>
<Citation>Jiang, R.H.Y., Tripathy, S., Govers, F. and Tyler, B.M. (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl Acad. Sci. USA 105, 4874-4879.</Citation>
</Reference>
<Reference>
<Citation>Jones, J.D.G. and Dangl, J.L. (2006) The plant immune system. Nature 444, 323-329.</Citation>
</Reference>
<Reference>
<Citation>Karimi, M., De Meyer, B. and Hilson, P. (2005) Modular cloning in plant cells. Trends Plant Sci. 10, 103-105.</Citation>
</Reference>
<Reference>
<Citation>Kim, S.Y., Kim, S.G., Kim, Y.S., Seo, P.J., Bae, M., Yoon, H.K. and Park, C.M. (2007a) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res. 35, 203-213.</Citation>
</Reference>
<Reference>
<Citation>Kim, S.G., Kim, S.Y. and Park, C.M. (2007b) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226, 647-654.</Citation>
</Reference>
<Reference>
<Citation>Kim, S.G., Lee, A.K., Yoon, H.K. and Park, C.M. (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J. 55, 77-88.</Citation>
</Reference>
<Reference>
<Citation>Klein, P., Seidel, T., Stöcker, B. and Dietz, K.-J. (2012) The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase gene expression. Front. Plant Sci. 3, 247.</Citation>
</Reference>
<Reference>
<Citation>Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E.L.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580.</Citation>
</Reference>
<Reference>
<Citation>Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874.</Citation>
</Reference>
<Reference>
<Citation>Laba, J.K., Steen, A. and Veenhoff, L.M. (2014) Traffic to the inner membrane of the nuclear envelope. Curr. Opin. Cell Biol. 28, 36-45.</Citation>
</Reference>
<Reference>
<Citation>Le, D.T., Nishiyama, R., Watanabe, Y., Mochida, K., Yamaguchi-Shinozaki, K., Shinozaki, K. and Tran, L.S.P. (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 18, 263-276.</Citation>
</Reference>
<Reference>
<Citation>Letunic, I. and Bork, P. (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242-W245.</Citation>
</Reference>
<Reference>
<Citation>Li, X. (2011) Infiltration of Nicotiana benthamiana protocol for transient expression via Agrobacterium. Bio Protoc. 1(e95).</Citation>
</Reference>
<Reference>
<Citation>Liang, M., Li, H., Zhou, F., Li, H., Liu, J., Hao, Y., Wang, Y., Zhao, H. and Han, S. (2015) Subcellular distribution of NTL transcription factors in Arabidopsis thaliana. Traffic 16, 1062-1074.</Citation>
</Reference>
<Reference>
<Citation>Liu, X., Sun, Y., Kørner, C.J., Du, X., Vollmer, M.E. and Pajerowska-Mukhtar, K.M. (2015) Bacterial leaf infiltration assay for fine characterization of plant defense responses using the Arabidopsis thaliana-Pseudomonas syringae pathosystem. J Vis Exp. 104, e53364.</Citation>
</Reference>
<Reference>
<Citation>Maestre-Reyna, M., Wu, S.M., Chang, Y.C., Chen, C.C., Maestre-Reyna, A., Wang, A.H.J. and Chang, H.Y. (2017) In search of tail-anchored protein machinery in plants: reevaluating the role of arsenite transporters. Sci. Rep. 7, 1-10.</Citation>
</Reference>
<Reference>
<Citation>McLellan, H., Boevink, P.C., Armstrong, M.R., Pritchard, L., Gomez, S., Morales, J., Whisson, S.C., Beynon, J.L. and Birch, P.R.J. (2013) An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog. 9, e1003670.</Citation>
</Reference>
<Reference>
<Citation>Moin, S.M. and Urban, S. (2012) Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics. eLife 2012, 1-16.</Citation>
</Reference>
<Reference>
<Citation>Mukhtar, M.S., Carvunis, A.R., Dreze, M. et al. (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science, 333(6042), 596-601.</Citation>
</Reference>
<Reference>
<Citation>Nakano, T., Suzuki, K., Ohtsuki, N., Tsujimoto, Y., Fujimura, T. and Shinshi, H. (2006) Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J. Plant. Res. 119, 407-413.</Citation>
</Reference>
<Reference>
<Citation>Nelson, B.K., Cai, X. and Nebenführ, A. (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126-1136.</Citation>
</Reference>
<Reference>
<Citation>Ng, S., Ivanova, A., Duncan, O. et al. (2013) A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis. Plant Cell 25, 3450-3471.</Citation>
</Reference>
<Reference>
<Citation>Nuruzzaman, M., Manimekalai, R., Sharoni, A.M., Satoh, K., Kondoh, H., Ooka, H. and Kikuchi, S. (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465, 30-44.</Citation>
</Reference>
<Reference>
<Citation>Nuruzzaman, M., Sharoni, A.M. and Kikuchi, S. (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. 4, 248.</Citation>
</Reference>
<Reference>
<Citation>O’Connell, R.J. and Panstruga, R. (2006) Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol. 171(4), 699-718.</Citation>
</Reference>
<Reference>
<Citation>Pauwelyn, E., Vanhouteghem, K., Cottyn, B., De Vos, P., Maes, M., Bleyaert, P. and Höfte, M. (2011) Epidemiology of Pseudomonas cichorii, the cause of lettuce midrib rot. J phytopathol. 159(4), 298-305.</Citation>
</Reference>
<Reference>
<Citation>Pedrazzini, E. (2009) Tail-anchored proteins in plants. J. Plant Biol. 52, 88-101.</Citation>
</Reference>
<Reference>
<Citation>Pelgrom, A.J.E., Eikelhof, J., Elberse, J., Meisrimler, C.N., Raedts, R., Klein, J. and Van den Ackerveken, G. (2019) Recognition of lettuce downy mildew effector BLR38 in Lactuca serriola LS102 requires two unlinked loci. Mol. Plant Pathol. 20, 240-253.</Citation>
</Reference>
<Reference>
<Citation>Pérez-Sancho, J., Tilsner, J., Samuels, A.L., Botella, M.A., Bayer, E.M. and Rosado, A. (2016) Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol. 26(9), 705-717.</Citation>
</Reference>
<Reference>
<Citation>Pereira-Santana, A., Alcaraz, L.D., Castaño, E., Sanchez-Calderon, L., Sanchez-Teyer, F. and Rodriguez-Zapata, L. (2015) Comparative Genomics of NAC Transcriptional Factors in Angiosperms: Implications for the Adaptation and Diversification of Flowering Plants. PLoS One, 10, e0141866. https://doi.org/10.1371/journal.pone.0141866.</Citation>
</Reference>
<Reference>
<Citation>Phillips, M.J. and Voeltz, G.K. (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol. 17(2), 69.</Citation>
</Reference>
<Reference>
<Citation>Pileggi, M., Pereira, A.A.M., Suva, J.D.S., Pileggi, S.A.V. and Verma, D.P.S. (2001) An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Braz. Arch. Biol. Technol. 44, 191-196.</Citation>
</Reference>
<Reference>
<Citation>Pruneda-Paz, J.L., Breton, G., Nagel, D.H., Kang, S.E., Bonaldi, K., Doherty, C.J., Ravelo, S., Galli, M., Ecker, J.R. and Kay, S.A. (2014) A genome-scale resource for the functional characterization of Arabidopsis transcription factors. Cell Rep. 8, 622-632.</Citation>
</Reference>
<Reference>
<Citation>Ramírez, V., Coego, A., López, A., Agorio, A., Flors, V. and Vera, P. (2009) Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator. Plant J. 58(4), 578-591.</Citation>
</Reference>
<Reference>
<Citation>Reyes-Chin-Wo, S., Wang, Z., Yang, X. et al. (2017) Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun. 8, 14 953.</Citation>
</Reference>
<Reference>
<Citation>Rushton, P.J., Bokowiec, M.T., Han, S., Zhang, H., Brannock, J.F., Chen, X., Laudeman, T.W. and Timko, M.P. (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol. 147, 280-295.</Citation>
</Reference>
<Reference>
<Citation>Schiestl, R.H.R. and Gietz, R.D.R. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339-346.</Citation>
</Reference>
<Reference>
<Citation>Schuldiner, M., Metz, J., Schmid, V., Denic, V., Rakwalska, M., Schmitt, H.D., Schwappach, B. and Weissman, J.S. (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634-645.</Citation>
</Reference>
<Reference>
<Citation>Seo, P.J., Kim, S.G. and Park, C.M. (2008) Membrane-bound transcription factors in plants. Trends Plant Sci. 13, 550-556.</Citation>
</Reference>
<Reference>
<Citation>Seo, P.J., Kim, M.J., Park, J.Y., Kim, S.Y., Jeon, J., Lee, Y.H., Kim, J. and Park, C.M. (2010) Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J. 61, 661-671.</Citation>
</Reference>
<Reference>
<Citation>Shao, S. and Hegde, R.S. (2011) Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27, 25-56.</Citation>
</Reference>
<Reference>
<Citation>Shen, H., Yin, Y., Chen, F., Xu, Y. and Dixon, R.A. (2009) A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenergy Res. 2, 217-232.</Citation>
</Reference>
<Reference>
<Citation>Sievers, F., Wilm, A., Dineen, D. et al. (2014) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539-539.</Citation>
</Reference>
<Reference>
<Citation>Singh, A.A.K., Sharma, V., Pal, A.K.A., Acharya, V. and Ahuja, P.S. (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res. 20, 403-423.</Citation>
</Reference>
<Reference>
<Citation>Sonnhammer, E.L., von, Heijne, G. and Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (Glasgow, J., Littlejohn, T., Major, F., Lathrop, R., Sankoff, D. and Sensen, C., eds), pp. 175-182.</Citation>
</Reference>
<Reference>
<Citation>Srivastava, R., Zalisko, B.E., Keenan, R.J. and Howell, S.H. (2017) The GET system inserts the tail-anchored protein, SYP72, into endoplasmic reticulum membranes. Plant Physiol., 173(2), 1137-1145.</Citation>
</Reference>
<Reference>
<Citation>Stassen, J., Seidl, M., Vergeer, P.W.J., Snel, B., Cuppen, E. and Van den Ackerveken, G. (2012) Effector identification in the lettuce downy mildew Bremia lactucae by massively parallel transcriptome sequencing. Mol. Plant Pathol. 13, 719-731.</Citation>
</Reference>
<Reference>
<Citation>Stassen, J.H.M., den Boer, E., Vergeer, P.W.J. et al. (2013) Specific in planta recognition of two GKLR proteins of the downy mildew Bremia lactucae revealed in a large effector screen in lettuce. Mol. Plant Microbe Interact. 26, 1259-1270.</Citation>
</Reference>
<Reference>
<Citation>Stevens R.B. (1960). Cultural practices in disease control. In (Horsfall J.G., Dimond A.E., eds). Plant pathology, an advanced treatise, New York, NY: Academic Press, Vol 3, 357-429.</Citation>
</Reference>
<Reference>
<Citation>Strisovsky, K., Sharpe, H.J. and Freeman, M. (2009) Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell 36, 1048-1059.</Citation>
</Reference>
<Reference>
<Citation>Thaminy, S., Miller, J. and Stagljar, I. (2004) The split-ubiquitin membrane-based yeast two-hybrid system. In Protein-Protein Interactions. Methods in Molecular Biology (Fu, H., ed.). Totowa, New Jersey: Humana Press, pp. 445-468.</Citation>
</Reference>
<Reference>
<Citation>Tsirigos, K.D., Peters, C., Shu, N., Käll, L. and Elofsson, A. (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 43, W401-W407.</Citation>
</Reference>
<Reference>
<Citation>Wang, Z., Han, Q., Zi, Q., Lv, S., Qiu, D. and Zeng, H. (2017) Enhanced disease resistance and drought tolerance in transgenic rice plants overexpressing protein elicitors from Magnaporthe oryzae. PLoS ONE, 12, e0175734. https://doi.org/10.1371/journal.pone.0175734.</Citation>
</Reference>
<Reference>
<Citation>Wang, N., Zheng, Y. and Xin, H. (2013) Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep. 32, 61-75.</Citation>
</Reference>
<Reference>
<Citation>Weßling, R., Epple, P., Altmann, S. et al. (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe. 16(3), 364-375.</Citation>
</Reference>
<Reference>
<Citation>Weihofen, A. and Martoglio, B. (2003) Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol. 13, 71-78.</Citation>
</Reference>
<Reference>
<Citation>Whisson, S.C., Boevink, P.C., Moleleki, L. et al. (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115-118.</Citation>
</Reference>
<Reference>
<Citation>Whisson, S.C., Boevink, P.C., Wang, S. and Birch, P.R. (2016) The cell biology of late blight disease. Curr. Opin. Microbiol. 34, 127-135.</Citation>
</Reference>
<Reference>
<Citation>Xin, X.F., Nomura, K., Aung, K., Velásquez, A.C., Yao, J., Boutrot, F., Chang, J.H., Zipfel, C. and He, S.Y. (2016) Bacteria establish an aqueous living space in plants crucial for virulence. Nature, 539(7630), 524.</Citation>
</Reference>
<Reference>
<Citation>Yang, Z.T., Wang, M.J., Sun, L., Lu, S.J., Bi, D.L., Sun, L., Song, Z.T., Zhang, S.S., Zhou, S.F. and Liu, J.X. (2014) The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet. 10, e1004243.</Citation>
</Reference>
<Reference>
<Citation>Yang, L., McLellan, H., Naqvi, S. et al. (2016) Potato NPH3/RPT2-like protein StNRL1, targeted by a Phytophthora infestans RXLR effector, is a susceptibility factor. Plant Physiol. 171, 645-657.</Citation>
</Reference>
<Reference>
<Citation>Zhao, J., Liu, J.-S., Meng, F.-N., Zhang, Z.-Z., Long, H., Lin, W.-H., Luo, X.-M., Wang, Z.-Y. and Zhu, S.-W. (2016) ANAC005 is a membrane-associated transcription factor and regulates vascular development in Arabidopsis. J. Integr. Plant Biol. 58, 442-451.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
<li>Pays-Bas</li>
</country>
<region>
<li>Utrecht (province)</li>
</region>
<settlement>
<li>Utrecht</li>
</settlement>
<orgName>
<li>Université d'Utrecht</li>
</orgName>
</list>
<tree>
<country name="Pays-Bas">
<region name="Utrecht (province)">
<name sortKey="Meisrimler, Claudia Nicole" sort="Meisrimler, Claudia Nicole" uniqKey="Meisrimler C" first="Claudia-Nicole" last="Meisrimler">Claudia-Nicole Meisrimler</name>
</region>
<name sortKey="Oud, Bart" sort="Oud, Bart" uniqKey="Oud B" first="Bart" last="Oud">Bart Oud</name>
<name sortKey="Out, Suzan" sort="Out, Suzan" uniqKey="Out S" first="Suzan" last="Out">Suzan Out</name>
<name sortKey="Pelgrom, Alexandra J E" sort="Pelgrom, Alexandra J E" uniqKey="Pelgrom A" first="Alexandra J E" last="Pelgrom">Alexandra J E. Pelgrom</name>
<name sortKey="Van Den Ackerveken, Guido" sort="Van Den Ackerveken, Guido" uniqKey="Van Den Ackerveken G" first="Guido" last="Van Den Ackerveken">Guido Van Den Ackerveken</name>
</country>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Meisrimler, Claudia Nicole" sort="Meisrimler, Claudia Nicole" uniqKey="Meisrimler C" first="Claudia-Nicole" last="Meisrimler">Claudia-Nicole Meisrimler</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000450 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000450 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31077456
   |texte=   Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31077456" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024